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Abstract. Local wind fields that account for topographic interaction are a key element for any wildfire spread simulator.
Currently available tools to generate near-surface winds with acceptable accuracy do not meet the tight time constraints
required for data-driven applications. This article presents the specific problem of data-driven wildfire spread simulation
(with a strategy based on using observed data to improve results), for whichwind diagnosticmodelsmust be run iteratively

during an optimisation loop. An interpolation framework is proposed as a feasible alternative to keep a positive lead time
while minimising the loss of accuracy. The proposed methodology was compared with the WindNinja solver in eight
different topographic scenarios with multiple resolutions and reference – pre-run– wind map sets. Results showed a major

reduction in computation time (,100 times once the reference fields are available) with average deviations of 3% in wind
speed and 38 in direction. This indicates that high-resolution wind fields can be interpolated from a finite set of base maps
previously computed. Finally, wildfire spread simulations using original and interpolated maps were compared showing

minimal deviations in the fire shape evolution. This methodology may have an important effect on data assimilation
frameworks and probabilistic risk assessment where high-resolution wind fields must be computed for multiple weather
scenarios.
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Introduction

Wind speed and wind direction are two of the most influential
parameters for wildfire spread simulations. If wind is present, it

is the principal driver for the fire front shape and direction of
propagation (Rothermel 1972; Albini 1982). However, the wind
speed and direction are not spatially homogeneous along the fire

front and they are highly influenced by topography (Forthofer
et al. 2014b). This fact increases the difficulty of predicting the
propagation directions andmight cause some extreme behaviour

in complex terrain (Viegas and Simeoni 2011; Sharples et al.
2012). Thus, it seems necessary to produce accurate wind fields
and employ them in fire propagation models in order to deliver
detailed fire front forecasts to emergency responders.

Wildfires are known to alter the local weather by inducing
strong wind currents that in turn affect the flame structure and
ultimately accelerate the fire spread (Clark et al. 2004; Filippi

et al. 2011). Attempting to predict wildfire spread from first
principleswould thus require a fire-spreadmodel to be coupled to
a mesoscale numerical weather prediction model. An example of

this approach isWRF-SFIRE (WeatherResearch and Forecasting
model-Spread Fire), which is being used operationally in Israel.

Although this tool has shown promising results, its complexity,
required resources (several hundred cores) and initialisation
issues mean that it is beyond the current computing capacity

of most emergency response services.
An uncoupled strategy to generate high-resolution wind

diagnostic models consists of running common numerical weath-

er prediction (NWP) models on smaller grids than their normal
application (3 km or larger horizontal grid resolution). Although
this prognostic approach has given positive results with resolu-

tions of less than 1 km (Seaman et al. 2012; Ching et al. 2014),
when used in complex terrain, they encounter problems with the
computational grids necessary for finite difference discretisation
(Lundquist et al. 2010) and the turbulence closure models

(Wyngaard 2004). This, together with the costly running time,
render them unappropriated for most wildfire scenarios. An
alternative approach is to exploit mesoscale weather predictions

or localised wind field measurements and apply a diagnostic
model to downscale the wind maps to high spatial resolutions
(up to 15 m) at a low height (below 2 m). The advantages of this

strategy are the reduction in computational time (owing to
simplified models and the avoidance of time stepping) and the
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accurate integration of digital elevation maps (DEM) with higher
resolution than the prognostic approach.

High-resolution diagnosticwindmodels can be classified into
three categories according to the level of physics considered and
the strategy followed to resolve it. The diagnostic models of the

first type are called mass-conserving models and use fundamen-
tal mass-balance equations often combined with empirical cor-
relations for non-neutral vertical stability or diurnal heating
dynamics (Forthofer et al. 2009; Butler et al. 2015). The models

within the second category are based on the numerical approxi-
mate solution of Navier–Stokes equations together with a turbu-
lence submodel for closure. They can also incorporate energy

balance equations. These computational fluid dynamics (CFD)
models can deliver a high degree of accuracy but usually require
large computational resources. Examples include WindStation

(Lopes 2003) –specifically aimed at assisting wildfire simula-
tions – and the more general OpenFOAM (Weller and Tabor
1998). The third category falls in between the two previous
categories, as momentum is solved by linearising the conserva-

tion equations. Their performance in terms of computing time is
similar to mass-conserving models, but despite including more
physics they tend to produce less accurate results than mass-

conservingmodels, as demonstrated in scenarios with dispersion
of hazardous materials (Homicz 2002).

WindNinja (Forthofer 2007; Forthofer et al. 2014b; Wagen-

brenner et al. 2016) is an open-source software developed and
maintained by the USDA Forest Service. It takes into account
the terrain (DEM) and three types of canopy cover (grass, brush

and trees), and it can use either a mass-conserving or a mass-
and-momentum model. The mass-conserving model estimates
the result of the mass balance equation, whereas the mass-and-
momentum model uses the OpenFOAM toolkit (Weller and

Tabor 1998). Although the use of the second approach gives
more accurate results for strong winds on the lee side of
mountains and ridges (where eddies can occur), the first option

is 60 times faster to deliver the wind map (Forthofer et al.

2014a). Additionally, the mass-conserving approach allows the

use of point measurements and is able to handle non-neutral
atmospheric stability effects. Moreover, its performance might
be improved by using mesoscale forecast data for initialisation.

This combination can thus account for both mesoscale data and
local terrain effects (Forthofer et al. 2014b).

WindNinja is one of the most extensively used diagnostic
wind models used to generate high-resolution near-surface

wind maps for the use in fire propagation models. WindNinja
is the core near-surface wind simulator for recognised fire
spread simulators such as FARSITE (Finney 1998), FireStation

(Lopes et al. 2002), FlamMap (Finney 2006) and Wildfire-
Analyst (Monedero et al. 2011). Fig. 1 shows typical output of
WindNinja mapped onto a terrain rendered in Google Earth.

Despite the software’s reasonably high speed, computation
times required even by the fast mass-balance solver are of the
order of 5 min for an 800 � 800 cell map using multicore
workstations (Sanjuan et al. 2016a). Computing times of such

magnitude are unaffordable if the wind field is to be computed
recursively. This is a critical feature of any data assimilation
algorithm incorporated into data-driven simulators. Those

simulators (see examples in Altintas et al. 2015; Rios et al.

2016; Zhang et al. 2017) try to match observed fire locations
with simulation results. To achieve this, they need to run the fire

spread algorithm (which includes a surface wind module)
multiple times. Thus, resolving the wind field for different
values of mesoscale wind is a major bottleneck when aiming to

achieve positive lead times.
In recent years several attempts have been made to develop

data-driven wildfire propagation systems. They have been
proven to be a promising strategy to overcome the lack of

information (such as fire front location, accurate vegetation
maps, weather conditions, etc.) inherent in emergency opera-
tions, and to reduce the high uncertainty of initial model
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0–3.63
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Fig. 1. WindNinja output at 1 m height and grass canopy for a given hilly scenario. Wind vector map

representation (direction and magnitude) in Google Earth for 10 m s�1 and 08 (north) principal wind speed and

direction.
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parameters (Mandel et al. 2009; Rios and Rein 2014; Rochoux
et al. 2014; Altintas et al. 2015; Rios et al. 2016). Although
different strategies are being investigated, they all require

multiple runs of the core spread model, which consists of a
wildfire spread algorithm and normally includes the computa-
tion of near-surface wind diagnostic models. Therefore, compu-

tation time has become a principal constraint if thewhole system
is to deliver useful information to end users in due time. Recent
efforts to parallelise WindNinja exploit domain decomposition

methods (Sanjuan et al. 2016a), computational parallelisation
based on GPU (graphics processing unit) (Sanjuan et al. 2016c)
and hybrid integration using message passing interphase (MPI)
and open multi-processing (OpenMP) (Sanjuan et al. 2016b).

Despite the remarkable speed-up achieved with those strategies,
the computing time required for a single run of a 1500 � 1500
cell map exceeds 90 s on a 64 node processor using the most

efficient approach (hybrid MPI-OpenMP integration). Wind-
Ninja is thus still not sufficiently fast to be used in an optimisa-
tion framework where hundreds of runs are required.

In order to minimise the computational cost, we propose to
downscale only a few combinations of wind speed and direction
(gridded wind output from WindNinja) and then interpolate the

wind field at 1 m above ground level (the lower limit of the
downscaling height suitable for this methodology). The interpo-
lation is performed using a set of base fields generated with
WindNinja for different wind speeds and directions. This

scheme allows to produce wind maps that take into account
terrain characteristics while avoiding to run WindNinja itera-
tively. This approach has an intrinsic limitation when resolving

thermally driven winds that might be dominant in complex
terrain during quiescent synoptic conditions. However, the
approach is valid for any non-quiescent situations where

mechanical effects of the terrain dominate over thermal effects.
Those are the cases of principal interest for fire applications, as
they also yield the highest fire front rate of spread.

In this article, we perform an in-depth analysis of this

strategy using the WindNinja mass-conserving solver without
thermal parameterisations. The effects of grid resolution,
canopy cover and the number of available base maps are studied

in order to find the best interpolation framework. The proposed
methodology is assessed in different scenarios (illustrating
diverse topography configurations) under different conditions

by comparing the resulting wind fields with the results obtained
using WindNinja directly. Finally, a comparative study is
presented to evaluate the effect of the proposed wind field

interpolation methodology in a fire spread simulation.

Interpolation framework

A possible approach to speed up multiple WindNinja runs is to
exploit the fact that, within a data-driven application strategy,

diagnostic wind models need to be run multiple times for the
same scenario (e.g. same DEM, canopy cove, height) changing
only the boundary conditions such as the initialisation wind

speed and direction (hereafter referred as the principal wind
speed and direction), canopy cover, etc. An interpolation
framework can be set as follows:

A WindNinja generated wind map (W) consists of two
matrices that contain wind speeds (U) and wind directions (D)

(in angles) at a requested height (h). A wind mapW is produced
by WindNinja from a given representative wind speed, called
principal wind speed (U) and principal wind direction (D) at a

certain height (h), for a given digital elevation model (T), and a
fuel type ( f ) that can be either grass, bush or trees.

A set of basemap ({Wb}), are thosewindmaps that are used as

basis for the interpolation framework. Thus, they are composed
bybasewind speed (Ub) and basewinddirections (Db).As before,
those maps are generated with principal wind speeds (Ub) and

directions (Db). The subscript ‘b’ is to recall that they are principal
wind components that define the correspondent base map.

For a singular principal wind speed and an n-direction Wind-
Ninja produces a set of wind maps {W1,W2,y,Wn} that can be

employed as base wind maps (namely base maps, Ub,i, Db,i).
Then, instead of running WindNinja again for a new desired
principal wind speed and direction, the wind map (UI, DI) is

obtained by interpolating the base maps to the desired principal
wind speed (U) and direction (D) according to the following
equations:

UI ¼
Xn

i

Ub;i Ub;i;Db;i; f ; h;T
� � � FU ;i Ub;i;Db;i; f ; h; T ;D;U

� � ð1Þ

DI ¼
Xn

i

Db;i Ub;i;Db;i; f ; h;T
� � � FD;i Ub;i;Db;i; f ; h; T ;D;U

� �
: ð2Þ

The wind speed proportionality factor (FU,i) could in principle
depend on the fuel type (f), the original principal wind speed
(Ub). Similar dependencies might be found for the wind direc-

tion proportionality factor (FD,i). Although the proportionality
factor can also depend on the DEM, the hypothesis is that this
dependency is negligible. To assess whether such an interpola-

tion scheme exists and whether it has a coherent form for the
different dependencies, 11 scenarios were defined and explored.
The scenario descriptions are given in Table 1. For each scenario

all wind speeds, directions and canopy covers were combined to
explore the sensitivity to the parameters.

In total, 1320WindNinja runswere launched and their output
compared. The work flow is represented in Fig. 2 together with

the nomenclature used in following sections. To estimate the
factors FD,i and FU,i (Eqns 1, 2), maps generated at a height of
1 m were compared with maps where both U,D and Ub,Db were

changed. Seeing as the values of FD and FU might differ at each
pixel point in the map, mean values and standard deviations
were computed.

Principal wind speed dependency

The dependence of the factors (FD and FU) on the speed (U) and
the input base speed (Ub) is analysed by comparing speed and

direction maps generated with a constant principal wind direc-
tion Db. FU shows a strong linear dependence on U in all sim-
ulated scenarios. However,FD shows no clear dependence onU,

as the mean value is very close to unity (no dependence at all).
The dispersion of values for averaged speed lower than 3 m s�1

does increase. Fig. 3 shows the mean values of FU (solid lines)
and their standard deviation (shadowed areas) for an illustrating

scenario, (Alaska30m) as a function of 15 different wind speeds
(U) and eight base wind speeds (Ub).
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The linear dependency between FU and U (the slopes of the
different curves in Fig. 3a) changes as a function of the principal

wind (Ub) used to create the base map (Ub). To quantify this
slope, a linear regression of the form FU¼ AUþ Bwas adjusted
for every principal wind speed and every testing scenario in

Table 1. Note that the intercept is added for consistency although
a value of zero is expected. The results for grass canopy are

depicted in Fig. 4. All scenarios show exactly the same slope
behaviour for different base wind speeds. This behaviour
actually corresponds to the inverse of the base wind speed itself.

Table 1. Simulated scenarios used for model testing

Abbreviations: IGCC, Institut Geogràfic i Cartogràfic de Catalunya; USGS, Unites States Geological Survey; DEM, digital elevation maps; Res, resolution.

Canopy type abbreviations: g, grass; b, brush; t, trees.Ub andDb values are expressed as lower bound (lb), step (s), upper bound (up) and the resulting number of

elements (n) as: lb:s:up (n)

ID DEM Res Source Size Size Canopy Ub Db

(m) (km) (cells� cells) (m s�1) (n) 8 (n)

Montseny05m 5 IGCC 4.70 3.65 940 730 g, b, t 1:1:2 (2) 0:15:285 (8)

Montseny15m 15 IGCC 6.81 5.46 454 364 g, b, t 1:2:15 (8) 0:45:315 (8)

Alaska30m 30 USGS 28.20 21.39 940 713 g, b, t 1:2:15 (8) 0:45:315 (8)

Boulder30m 30 USGS 7.20 5.13 240 171 g 5:6:11 (2) 0:5:355 (32)

Canada30m 30 USGS 15.60 10.74 520 358 g, b, t 1:2:15 (8) 0:45:315 (8)

Colorado30m 30 USGS 7.20 5.13 240 171 g 1:2:15 (8) 0:15:345 (25)

Idaho30m 30 USGS 28.20 21.39 940 713 g, b, t 1:1:16 (16) 0 (1)

Missoula30m 30 USGS 6.42 3.78 214 126 g, b, t 1:2:15 (8) 0:45:315 (8)

Maipo90m 90 USGS 19.17 11.88 213 132 g 1:2:15 (8) 0:45:315 (8)

Santiago90m 90 USGS 18.63 12.06 207 134 g 1:2:15 (8) 0:45:315 (8)

Valpo90m 90 USGS 18.81 12.87 209 143 g 1:2:15 (8) 0:45:315 (8)

Montseny05m 5 IGCC 4.70 3.65 940 730 g, b, t 1:1:2 (2) 0:15:285 (8)

Montseny15m 15 IGCC 6.81 5.46 454 364 g, b, t 1:2:15 (8) 0:45:315 (8)

Alaska30m 30 USGS 28.20 21.39 940 713 g, b, t 1:2:15 (8) 0:45:315 (8)

Boulder30m 30 USGS 7.20 5.13 240 171 g 5:6:11 (2) 0:5:355 (32)

Canada30m 30 USGS 15.60 10.74 520 358 g, b, t 1:2:15 (8) 0:45:315 (8)

Colorado30m 30 USGS 7.20 5.13 240 171 g 1:2:15 (8) 0:15:345 (25)

Idaho30m 30 USGS 28.20 21.39 940 713 g, b, t 1:1:16 (16) 0 (1)

Missoula30m 30 USGS 6.42 3.78 214 126 g, b, t 1:2:15 (8) 0:45:315 (8)

Maipo90m 90 USGS 19.17 11.88 213 132 g 1:2:15 (8) 0:45:315 (8)

Santiago90m 90 USGS 18.63 12.06 207 134 g 1:2:15 (8) 0:45:315 (8)

Valpo90m 90 USGS 18.81 12.87 209 143 g 1:2:15 (8) 0:45:315 (8)
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Fig. 2. Work flow diagram. Squared boxes are input, diamonds are computational process and oval are outputs. Illustrative wind field maps of a

10 � 10 cells scenario are displayed.

260 Int. J. Wildland Fire O. Rios et al.



The intercept does show some dependence on the scenario, but
as it is of the order of�10�3, it can be neglected (as anticipated).

The linear dependence onUwhen the direction is fixed could be
expected because mass-consistent models simply solve the
Poisson equation and Fig. 3 can thus be regarded as a verifica-

tion result.
The wind speed interpolating factorFU can thus be generated

using the basemapwith the closest direction available according
to the following relation,

FU Ub;Db;U ;Dð Þ ¼ 1

Ub

� U Db
j ð3Þ

Principal wind direction dependency

An analogous analysis is conducted for the dependence of FU

and FD on the wind direction. Results for the Alaska30m case
with a base wind speed of 15 m s�1 are presented in Fig. 5 as an

illustration (other scenarios, again, show similar behaviour).
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The speed downscaling factor FU shows an averaged value of
unity (i.e. no significant influence) when the wind direction
changes. The standard deviation, however, shows large values

as the angle between the input and the base wind direction
increases, reaching a maximum when they are perpendicular to
each other (shaded area in Fig. 5). That is, if the base map plot is

generated with a base wind direction Db ¼ 08, the discrepancy
will be at its maximum with an input wind direction (D) of 908.
The standard deviation can reach values five times larger than

the absolute mean downscaling value (Fig. 5a). The standard
deviation rapidly decreases as the interpolating direction
becomes closer to reference direction maps and for symmetrical

base wind directions (i.e. 0–180, 90–270). This symmetry
implies that the wind speed’s directional dependence is can-
celled out for opposite directions. This indicates that wind
directionmust not differ significantly from the basemap in order

to get an acceptable downscaling result. This effect increases as
the base wind speed gets higher. The base wind direction factor
FD shows a linear dependence onwind direction for a reasonably

large range of averaged wind directions (D), but the standard
deviation (shaded areas) is larger when changing the averaged
wind direction (D) thanwhen changing thewind speed (previous

case, Fig. 4). The directional dependence of FD on the updated
direction (D) has a large standard deviation when comparing
maps that are only some degrees off the base direction (see
Fig. 5b). The comparison shows different behaviours for

directions to both sides of the base map direction. Four different
base reference directions are displayed in Fig. 5b.

Fig. 5 led to the conclusion that more than one base wind

direction map is required in order to keep the interpolating error
in acceptable bounds because FD does not show a clear pattern
that would allow for a one-point correction. The proposed

framework thus requires a set of pre-run wind directions so that

the wind direction factor FD can be defined as a direct linear
interpolation between the closest two maps. Different direction
sets are investigated in the following sections. The interpolation

is formulated as:

FU Ub;Db;U ;Dð Þ ¼ D Ub;Dbkð Þ

þ D Ub;Dbkð Þ � D Ub;Dbkþ1

� �

Ub � Dbkþ1

� D� Dbð Þ ð4Þ

where the subscript k represents the closest direction map for a

given interpolating direction (D).
It is worth noting that, because the wind direction is a cyclic,

dimensionless magnitude, it must be properly scaled and

bounded in order for Eqn 4 to be applied. This is, all angles
are devalued to [0, 2p] and all subtraction operations bounded
between [–p, p] in order to preserve linearity.

Out of the three canopy covers explored (grass, trees and

brush), only the last one showed a noticeable difference.Whereas
grass and trees exhibit similar output wind fields (the comparison
gives an absolute discrepancy distribution centred at 0) the brush

canopy has a slowing effect and scatters the directions. Therefore,
it is important to use a reference map specially generated for the
required canopy, especially if it is the brush canopy.

Validation methodology

To validate the overall interpolating framework we explore the
absolute error when comparing the interpolated wind maps with

directly generated WindNinja simulations. The validation is
performed step by step. First, only the wind speed is evaluated;
second, only the directional correction; lastly, both direction and

speed are corrected analysing the effect of the DEM’s mesh
resolution. For assessing the discrepancy, the error (E) and the
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absolute error (AE) are defined together with their percentages

(PE, APE) as:

EU
i ¼ UI T ; f ;U ;Dð Þi�U0 T ; f ;U ;Dð Þi ð5Þ

AEU
i ¼ UI T ; f ;U ;Dð Þi�U0 T ; f ;U ;Dð Þi

�� �� ð6Þ

PEU
i ¼ EU

i

U0 T ; f ;U ;Dð Þi
� 100 ð7Þ

APEU
i ¼ AEU

i

U0 T ; f ;U ;Dð Þi
� 100 ð8Þ

where |x| denotes the absolute value of x, subscript i represents a
particular pixel in the wind speed matrix, and UO and UI are the

originalWindNinja simulated and interpolatedwind speedmaps
respectively. The same definition applies to DO (direction
maps), although percentage errors in this case are meaningless.

When dealing with averaged values of AEi and APEi metrics,

the abbreviationsMAE (mean absolute error) andMAPE (mean

absolute percentage error) are used. Fig. 6 displays the valida-
tion process for an illustrative subset of 11 � 11 cells. The
difference between the original and interpolated wind field

(calculated by vector subtraction) is displayed as a histogram
for both speed and directions.

The eight different scenarios used for validating the interpo-

lation framework are described in Table 2. Each scenario was
simulated with several different DEM resolutions to assess the
influence of this parameter on the interpolation. The combina-
tion of wind speed and direction (columns 8 and 9) produced

7776 scenarios that were run with WindNinja.

Results and discussion

Framework validation

Wind speed interpolation

First, the framework presented abovewas applied to evaluate
the downscaling interpolation when the direction of the princi-

pal wind used to generate the reference base map matches the

0
0 30 60 90 120 150

30

60

m

m

WN original run

Original-Interpolation

Interpolation

90

120

150
7.0

6.3

5.6

4.9

4.2

3.5

2.8

2.1

W
in

d 
sp

ee
d 

(m
 s

�
1 )

0
0 30 60 90 120 150

30

60

m

m

90

120

150
7.0

6.3

5.6

4.9

4.2

3.5

2.8

2.1

W
in

d 
sp

ee
d 

(m
 s

�
1 )

0
0 30 60 90

0
�1 �0.5 0 0.5

Speed difference (m s�1)

Wind speed (m s�1)

Wind direction (�)

F
re

qu
en

cy

1 1.5 2

5

10

15

20

0
�10 �5 0 5

Direction difference (�)

F
re

qu
en

cy

10 15 20

5

10

15

120 150

30

60

m

m

90

120

150

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

W
in

d 
sp

ee
d 

(m
 s

�
1 )

Fig. 6. Composite illustrating the validation process for aMontseny15m scenario. Only a subset of 11� 11 cells is shown for clarity. The

WindNinja original field (U¼ 9m s�1 andD¼ 1058) is comparedwith an interpolated field (fromUb¼ 5m s�1 1 andDb¼ {90, 180}). The

subtraction result is then statistically studied, in this case in terms of histogram plots for each magnitude.
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correction direction (i.e. only Eqn 3 was evaluated). The results
show that speed interpolation leads to an absolute error lower

than 0.05 m s�1 when using base maps generated with velocities
higher than 5 m s�1. In contrast, when using low speed maps
(lower than 5 m s�1), the error can reach values similar to the

actual speed (100% relative error). The explanation for this is
that low speed maps introduce a high uncertainty in the interpo-
lating factor (as highlighted in Fig. 3). Despite this fact, the

overall error is lowwhen the wind direction is similar to the base
wind map. Fig. 7 shows the absolute error (AEU) in form of a
box-plot using different base speedmaps. The box represents the
Q1 and Q3 quartiles (50% of the values) whereas the whisker

lengths enclose 99.3% of the map’s pixels. All maps generated
with speeds (Ub) higher than 10 m s�1 have similar errors and
thus any base speed beyond this threshold is considered to be an

optimum reference speed.

Wind direction interpolation

To assess the directional downscaling interpolation, Wind-
Ninja simulations for every 158 were compared with interpola-

tions generated with three different sets of base maps ({Wbi}).
Although all scenarios were processed, only the results for
Boulder900�900_30m are shown in Fig. 8. The sets were

composed of: 12 maps spaced 308 apart (Fig. 8a), eight maps
spaced 458 apart (Fig. 8b) and four maps at cardinal directions
(Fig. 8c). Thewind speedwas set to 11m s�1, the sameas the base

maps. The mean of the absolute error is zero for all cases (error
compensation) and the whiskers’ length (99% of the values)
increases from 28 when 12 base maps are used, to over 158 when
only four directions are taken as reference. The error between

base direction maps shows a similar behaviour regardless of the
direction. A close look in the three panels of Fig. 8, however,
shows small differences because of topography anisotropy.

Table 2. Simulated scenarios used for model validation

The canopy cover is grass type. See Table 1 for abbreviations. All plots are squared. The hillshade representation of each scenario is depicted in Fig. S1,

available as Supplementary Material to this paper

Scenario Res Source Type Altitude Size (side) U D

(m) min–max (m) (km) (pixels) (m s�1) (n) 8 (n)

Atlanta USGS Hill 1616–1821

Atlanta_300�300_90m 90 – – – 27 300 1:2:23 (12) 0:15:359 (24)

Atlanta_900�900_30m 30 – – – 27 900 1:2:23 (12) 0:15:359 (24)

Atlanta_108�108_250 250 – – – 27 108 1:2:23 (12) 0:15:359 (24)

Boulder USGS Hill–Flat 1535–2615

Boulder_108�108_250m 250 – – – 27 108 1:2:23 (12) 0:15:359 (24)

Boulder_300�300_90m 90 – – – 27 300 1:2:23 (12) 0:15:359 (24)

Boulder_900�900_30m 30 – – – 27 900 1:2:23 (12) 0:15:359 (24)

Idaho USGS Hill–Flat 123–219

Idaho_300�300_90m 90 – – – 27 300 1:2:23 (12) 0:15:359 (24)

Idaho_900�900_30m 30 – – – 27 900 1:2:23 (12) 0:15:359 (24)

Kansas USGS Flat 207–286

Kansas_108�108_250 250 – – – 27 108 1:2:23 (12) 0:15:359 (24)

Kansas_300�300_90m 90 – – – 27 300 1:2:23 (12) 0:15:359 (24)

Kansas_900�900_30m 30 – – – 27 900 1:2:23 (12) 0:15:359 (24)

Montseny IGCC Mountain 527–1972

Montseny_50�50_90m 90 – – – 4,5 50 1:2:23 (12) 0:15:359 (24)

Montseny_75�75_60m 60 – – – 4,5 75 1:2:23 (12) 0:15:359 (24)

Montseny_150�150_30m 30 – – – 4,5 150 1:2:23 (12) 0:15:359 (24)

Montseny_300�300_15m 15 – – – 4,5 300 1:2:23 (12) 0:15:359 (24)

Montseny_900�900_5m 5 – – – 4,5 900 1:2:23 (12) 0:15:359 (24)

Needham USGS Mountain 1919–3480

Needham_108�108_250 250 – – – 27 108 1:2:23 (12) 0:15:359 (24)

Needham_300�300_90m 90 – – – 27 300 1:2:23 (12) 0:15:359 (24)

Needham_900�900_30m 30 – – – 27 900 1:2:23 (12) 0:15:359 (24)

Olost IGCC Hill 421–641

Olost_50�50_90m 90 – – – 4,5 50 1:2:23 (12) 0:15:359 (24)

Olost_75�75_60m 60 – – – 4,5 75 1:2:23 (12) 0:15:359 (24)

Olost_150�150_30m 30 – – – 4,5 150 1:2:23 (12) 0:15:359 (24)

Olost_300�300_15m 15 – – – 4,5 300 1:2:23 (12) 0:15:359 (24)

Olost_900�900_5m 5 – – – 4,5 900 1:2:23 (12) 0:15:359 (24)

Riverside USGS Hill 293–752

Riverside_300�300_90m 90 – – – 27 300 1:2:23 (12) 0:15:359 (24)

Riverside_900�900_30m 30 – – – 27 900 1:2:23 (12) 0:15:359 (24)

Riverside_108�108_250 250 – – – 27 108 1:2:23 (12) 0:15:359 (24)
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Wind speed and wind direction correction

To evaluate the overall accuracy of the interpolating scheme,

the principal wind direction and speed were freely changed for
all 27 cases gathered in Table 2. The base maps were generated
with a principal wind speed of Ub ¼ 11 m s�1 and two sets of

principal directions ({Dbi}) were used: four directions (spanned
908) and eight directions (spanned 458). The interpolation
correctness is quantified by theMAE and the standard deviation
(s.d.) of every interpolated map (UI, DI) compared with the

WindNinja original maps (U0, D0). The results are presented as
filled contour plots for the wind speed (U) and direction (D).
That is, each pixel represents a MAE (and s.d.) value for a given

combination of U and D. To evaluate the interpolation strategy
along multiple scenarios, they can be gathered according to
DEM resolution (see Table 2) and their MAE can be averaged

and shown in one figure. The results are depicted in Fig. 9 for the
two scenarios of Table 2 that have 15 m resolution DEM
(Fig. 9b, d) together with the eight scenarios that have 30 m

resolution (Fig. 9a, c). In all cases, the direction of the compared
maps span from 0 to 3598, with a step of 158 (i.e. 24 directional
maps). The wind speed spans from 1 to 23 m s�1, with a step of
2 m s�1 (i.e. 12 maps). The maximum error is found halfway

between directional maps (either at 458 or at 22.58 from the

reference map) and increases with the wind speed up to 3 m s�1

for a reference speed of 23m s�1 when the four directional maps
are used, and to 1.1 m s�1 at 23 m s�1 on the eight maps scheme.

The wind direction (Fig. 10) is less correctly solved. The

mean absolute error grows beyond 108with a standard deviation
that reaches 208 in the worst case (reference maps spacing 908).
When more base maps are used, or the DEM resolution is
decreased, the MAE together with the maximum standard

deviation is decreased to 68. Doubling the amount of available
base maps halves the incurred error. In all cases, the error is
constant along the reference wind direction. This indicates that

the directional interpolation uncertainty dominates over thewind
speed interpolation uncertainty. Figs S1, S2 and S3, available as
Supplementary Material to this paper, show the APE (absolute

percentage error) to further support this discussion.

Fire spread comparison

To assess the quality of the interpolating scheme, we used the fire

perimeter spread simulator described in (Rios et al. 2016) with
added topography to perform a 30 min synthetic run over the
Montseny scenario (Fig. 11). This data-driven simulator uses a
Rothermel approach as a core fire spread model. The perimeter

evolution is comparedwhenusing interpolated downscalingmaps,
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original WindNinja maps and constant wind. This comparison is

not intended to validate the propagation model, but to assess the
application of the proposed interpolation framework and to
highlight the improvement when using near-surface wind fields.

To represent the worst case, base maps were generated at
Ub ¼ 5 m s�1 with two different sets of directions ({Dbi}): four
and eight directions (i.e. every 90 and 458). The updated principal
wind was set to have a speed ofU¼ 10m s�1 blowing from 2408
(towards north-east). These conditions correspond to the highest
error committed by the interpolation, as discussed in previous

sections. A 15m resolution and a DEMwith 600� 600 cells (i.e.
9 � 9 km) was used. The same resolution was used for the wind
maps. The corresponding results are shown in Fig. 11. Isochrones
(120 s apart) are projected over the DEM hillshade map. Both

interpolated and original maps allow the simulator to capture
near-surface effects better than the homogeneous wind case, as

the wind is influenced by topography. In the homogeneous wind

case, the overall terrain influence is not represented. This is
clearly visible on the two sides of the ridge (at the centre of the
image in Fig. 11). The fire front has difficulties to propagate

downhill on the lee side and it breaks into two subfronts,
separated by a lower rate-of-spread zone. This is particularly
affected by a region with almost no wind (see Fig. 12).

Differences of up to 250 m in the fire front location exist at
30 min between the WindNinja map and the interpolated map
when four reference maps are used (Fig. 11a). This is because of

the fact that with the interpolated maps the spread model does
not correctly simulate the wind field on the lee side of the ridge,
and as a consequence a stagnation point develops at the front.
This lee side effect is not captured by the simulation with a

homogeneous wind field and remains mostly unresolved by a
908 step interpolation scheme. On the flanks the difference
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between original maps and interpolated maps is reduced to less

than 20 m.
When eight referencewind fieldmaps are used (Fig. 11b), the

lee side is properly resolved, so that no stagnation point appears,

and the differences in the fire front are between 10 and 80m. The
right flank correctly matches the original runs, whereas on the
left flank the error grows but remains below 10 m for the last

isochrone (i.e. after 30 min of propagation). To better illustrate
the difference between fire spread runs (differences lower than
10 m), individual isochrone plots (i.e. a pair of isochrones at a
time) are shown in Figs S5–S7).

In order to quantitatively assess the performance of the

wind interpolating scheme, a front-to-front comparison was
performed. For this, the shape deviation index (SDI) was
calculated for every isochrone and displayed in Fig. 13. The

SDIt is an error metric commonly used to compare front
agreement at a given time t, and it is defined as (Cui and Perera
2010; Rios et al. 2016):

SDIt ¼ 1� Ao
t \ Ai

t
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where Ao
t is the area of the isochrone run using an original

WindNinja wind field at time (t) and Ai
t is the area of the

corresponding isochrone produced with the interpolating
scheme. Note that as a better match is achieved, the SDI value
tends towards zero. Fig. 13 clearly reflects the improvement of

using the interpolation framework compared with using a
homogeneous wind field, as the error is kept below 20% for a
step size of 908 and 15% for a step size of 458.

Differences between both interpolation strategies begin to
grow after 20min, and they are on the order of 20mon the south-
eastern part of the fire front. Eachwind fieldmap simulated with

WindNinja takes ,50 s to run when parallelised on an eight
processor (Intel Xeon 2.3 Ghz E5-2697 ver. 4) dedicated
workstation. Applying the interpolating framework presented

in this paper gives an almost instant solution (run time,10�3 s,
without taking into account the run time of the pre-run base
maps). The computational break-even point is then at four
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(eight, if eight base maps are wanted) WindNinja iterations.
That is, for any application that requires more than four (eight)
updates of the wind field, the interpolation framework at hand is

faster at a ratio of a minute per additional wind map update
required. Given that the typical number of required wind map
updates in data-driven applications is of the order of several

hundred, this is clearly a major improvement.

Conclusions

A framework for downscaling and interpolating high-
resolution near-surface wind fields is presented and validated

in this article. The dependence of the downscaling factors is
explored statistically in terms of wind speed, wind direction,
vegetation structure andDEM resolution. The overall system is

evaluated with WindNinja simulations performed on eight
different scenarios representing diverse topographic config-
urations. Results showed that the wind speed used to generate
reference wind maps does not have a considerable influence as

long as it is high enough to capture the main near-surface wind
flows (i.e..3 m s�1). The base wind speed can thus be simply
extrapolated. Wind direction, however, has a larger influence

on downscaled wind maps and must therefore be interpolated.
Interpolations were compared using two reference wind
direction sets (with four and eight base direction maps). The

wind speed MAPE grows up to 7% for 20 m s�1 when using
only four base maps and the directional error has a maximum
MAE of 58. When using base maps for wind directions at every
458, the wind speed MAPE decreases to 3% and the directional

MAE decreases to 38. A 30min fire spread simulation was used
to compare and validate the two interpolating framework
configurations. The present implementation offers a signifi-

cant reduction in computing time if multiple wind simulations
are to be run in a particular scenario (as it would be the case in
data assimilation procedures). This speed-up can be in the

order of hours for optimisation routines requiring a high
number of model evaluations (e.g. genetic algorithms and
gradient-based methods). If eight base directions are used, the

discrepancy with respect to WindNinja simulations is kept low
enough so that the fire spread simulations initialised with those
interpolated data are equally acceptable for operational pur-
poses (less than 80m discrepancy in the fire front, and less than

10 m on the flanks after 30 min propagation). The results prove
this methodology is reliable and capable of speeding up
recursive near-surface wind evaluations, which would enable

data assimilation and probabilistic risk assessment applications
currently unfeasible.
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