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Abstract  
WindNinja is a standalone computer model designed to provide the user with simulations of 
surface wind flow. It is deterministic and steady state. It is currently being modified to allow the 
user to initialize the flow calculation using National Digital Forecast Database. It essentially 
allows the user to downscale the coarse scale simulations from meso-scale models to finer 
resolution. 
 
Additional keywords: Wind modeling 

Introduction 
Wind can be the dominant environmental variable affecting wildland fire intensity and spread. 
When fire is burning in mountainous terrain winds can vary widely in speed and direction over 
scales of 3 to 200 ft. The result is rapid changes in fire intensity at small scales that can have 
significant influences on fire growth at larger scales. Fire analysts and managers have not had 
access to detailed wind speed and direction forecasts at the required level of detail. However, the 
advance of computer hardware capabilities, relative availability of GIS databases (elevation) and 
new advances in numerical solutions to the system of equations governing wind flow have led to 
the development of new tools capable of simulating surface wind flow.  
 
Discussion 
Two general types of models exist: diagnostic and prognostic. Diagnostic models predict the 
wind field at one point in time, and are sometimes called steady-state models, they do not look 
forward in time. They are useful for situations requiring fast simulations, with limited computing 
resources and casual users such as disaster response applications. Prognostic models step 
forward in time. Most models used for weather forecasts are prognostic. 

Diagnostic models fall into three categories according to the amount of physics 
incorporated. The simplest category models are based only on conservation of mass, termed here 
mass-consistent models (Geai 1987; Montero et al. 1998; Moussiopoulos and Flassak 1986; Ross 
1990; Sherman 1978; Stone et al. 1984). The second diagnostic group solves a linearized 
momentum equation (Mason and King 1985; Mortensen et al. 1993; Oberheu and Mutch 1975; 
Walmsley et al. 1986). Computation times are similar to the mass-consistent models; but non-
linear momentum effects occurring in steep terrain are not handled well (Lopes 2003). The third 
type of diagnostic model considers conservation of mass and momentum with some form of 
turbulence closure (Alm and Nygaard 1995; Apsley and Castro 1997; Castro et al. 2003; Kim et 
al. 2000; Lopes 2003; Maurizi et al. 1998; Raithby and Stubley 1987; Uchida and Ohya 1999; 
Undheim et al. 2006) and even conservation of energy (Montavon 1998). In many of these 
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spatial dimensions, and does a run for each time step in the forecast. 
 

Conclusions 
A high resolution surface wind model has been modified to utilize data from a prognostic 
weather model at relatively coarse scale to initialize the calculation. A version of the model has 
been run using this option. Work continues on a GUI and final release version for distribution to 
wildland fire managers. This capability is unique in that it provides a physics based method for 
downscaling relatively coarse scale prognostic model data to 100-200m resolution. A release of 
this capability in the WindNinja software tool is expected in early 2011. 
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